Thick β-SiC CVD-Coated SiC Die System for Dry Cold Forging of Metals
نویسندگان
چکیده
منابع مشابه
Fluorinated SiC CVD
For the emerging semiconductor material silicon carbide (SiC) used in high power devices, chemical vapor deposition (CVD) is the most prominent method to create the electrically active SiC epitaxial layers in the device. The process of growing such epitaxial layers is to use a hydrocarbon and silane diluted in hydrogen flow through a hot chamber where chemical reactions take place in such a man...
متن کاملCVD growth of 3C-SiC on 4H-SiC substrate
The hetero epitaxial growth of 3C-SiC on nominally on-axis 4H-SiC is reported. A horizontal hot-wall CVD reactor working at low pressure is used to perform the growth experiments in a temperature range of 1200-1500 °C with the standard chemistry using silane and propane as precursors carried by a mix of hydrogen and argon. The optimal temperature for single-domain growth is found to be about 13...
متن کاملSiC epitaxy growth using chloride-based CVD
The growth of thick epitaxial SiC layers needed for high-voltage, high-power devices is investigated with the chloride-based chemical vapor deposition. High growth rates exceeding 100 μm/h can be obtained, however to obtain device quality epilayers adjustments of the process parameters should be carried out appropriately for the chemistry used. Two different chemistry approaches are compared: a...
متن کاملSublimation growth of thick freestanding 3C-SiC using CVD-templates on silicon as seeds
Cubic silicon carbide is a promising material for medium power electronics operating at high frequencies and for the subsequent growth of gallium nitride for more efficient light emitting diodes. We present a new approach to produce freestanding cubic silicon carbide (3C-SiC) with the ability to obtain good crystalline quality regarding increased domain size and reduced defect density. This wou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Crystals
سال: 2020
ISSN: 2073-4352
DOI: 10.3390/cryst10060539